Genome Sequencing & Assembly Michael Schatz

May 2, 2013 Human Microbiome Consortium

Outline

- I. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats

2. Genome assemblers

- I. Assemblathon I & 2
- 2. Hybrid assembly with the Celera Assembler

3. Resources

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

It ·	was	thevb	esthor	bes tinfes ini	esyais tilas	whoers troor	of times,	it was the	a gge b	fv ivsitschom ij	t itvæas h	e athe afto	ofisoolistanes	s,
						_			_					
It	was	theva	esthe	of times,	t was the	ne wors	t of times	, it was th	e taloge aoge	wisotatio	nwit s th	iewagetbfefa	gläsdfuleolishr	less,
T+ -	woo	flb er	abdet	hftimedint	wood with	a lazoratura	ftimes	t it was the	a ore of t	mindom	it was	the are of	ithelighnes	
11	was	uuwa	SULLEL	Destinestin	waa waa	CINCONDU S		, it was ui	t age of	wisuom, i	It was		11201010281103	5,
It	was	t tha	sbielsee	besime sint	es, was ab	etheonstre	f times ,es	it was the	e age of	vi sciscio ni	t, istavas	tehæg age f fo	olisbolisbnes	s,
				1										
It	W	alst tilhæ	esbtelset	b£sim€sim	eit, utawab	etheowstre	of of times	, it was th	e age of o	ofisodomi	t, ivtavsatsh	thege outgeto	ofistoolisstanes	s,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Like Dickens, have to reconstruct from short fragments

Assembling a Genome

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Two Paradigms for Assembly

Short read assemblers

- Repeats depends on word length
- Read coherency, placements lost
- Robust to high coverage

Long read assemblers

- Repeats depends on read length
- Read coherency, placements kept
- Tangled by high coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

Repeats and Read Length

- All microbes have repeats
 - Analyzed all 2,267 available microbial genomes
 - Most are < 7kbp in length and occur in < 100 copies
 - Most repeats are rRNA operons or IS elements
- With enough coverage, contig sizes will be determined by the repeats
 - 5-50kbp contig N50 sizes are common

Reducing assembly complexity of microbial genomes with single-molecule sequencing Koren S. et al. (2013) Under Review. http://arxiv.org/abs/1304.3752

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^{k} \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^{k}}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^{k}}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC regions
 - Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
 - Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
 - Uniqueness measured by a statistical test on coverage

N50 size

Def: 50% of the genome is in contigs as large as the N50 value


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Algorithms

- Attempt to answer the question:
 "What makes a good assembly?"
- Organizers provided simulated sequence data
 - Simulated 100 base pair Illumina reads from simulated diploid organism
 - -41 submissions from 17 groups

Assemblathon I:A competitive assessment of de novo short read assembly methods. Earl, DA, et al. (2011) *Genome Research*. doi: 10.1101/gr.126599.111

Final Rankings

10	Overall	CPNG50	5PNG50	Struct.	CC50	Selts.	Copy- Num-	Cov. Tet.	Car. COS
861	36	*		-			会	*	\$
Broad	37	宫	*	*	*				
WTSI-5	46		\$	*	*	*			1.02
CSHL	52	*	100					10.77	宫
BCCGSC	53							会	\$
DOLUGI	56		会	*	*	*			
RHUL	58		10000		1000			1.08	
WTSI-P	64							\$	
EBI	64					a serie	\$		
CRACS	64	V				京			

- ALLPATHS and SOAPdenovo came out neck-and-neck followed closely behind by SGA, Celera Assembler, ABySS
 - My recommendation for "typical" short read assembly is to use ALLPATHS
 - See Assemblathon 2 paper for more discussion

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species Bradman, KR. (2013) Under Review. http://arxiv.org/abs/1301.5406

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (600Mbp/day) Lower accuracy (~85%) Long reads (2-25kbp)

PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads to long reads
 - 2. Trim long reads at coverage gaps
 - 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248
PBeCR Reads 7x @ 3500 ** MiSeq for correction	50,995
PBeCR + Illumina Shred 7x @ 3500 ** MiSeq for correction 5x @ 3000bp shred	59,695

In collaboration with McCombie & Ware labs @ CSHL

Other Resources

Resource	URL	Description		
Google	http://www.google.com	Internet Search		
Google Scholar	http://scholar.google.com/	Literature Searches		
SeqAnswers	http://seqanswers.com/	Bioinformatics Forum		
Wikipedia	http://www.wikipedia.org/	Overview on anything		
Clovr	http://clovr.org/	Automated Sequence Analysis		
Circos	http://circos.ca/	Circular Genome Plots		
Galaxy	http://usegalaxy.org	Sequence Analysis in the clouds		
GraphViz	http://www.graphviz.org/	Graph Visualization		
IGV	http://www.broadinstitute.org/igv/	Read MappingViz		
R	http://www.r-project.org/	Stats & Visualizations		
Schatz Lab	http://schatzlab.cshl.edu/teaching/	Exercises and Lectures		

Assembly Summary

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus James Gurtowski Alejandro Wences Hayan Lee Rob Aboukhalil Mitch Bekritsky Charles Underwood **Rushil Gupta** Avijit Gupta Shishir Horane Deepak Nettem Varrun Ramani Kelly Moffat Eric Biggers Aspyn Palatnick

<u>CSHL</u> Hannon Lab Gingeras Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

IT Department

<u>NBACC</u> Adam Phillippy Sergey Koren SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

National Human Genome Research Institute

Thank You

http://schatzlab.cshl.edu @mike_schatz

